A variational formulation for finite deformation wrinkling analysis of inelastic membranes
نویسندگان
چکیده
This paper is concerned with a novel, fully variational formulation for finite deformation analysis of inelastic membranes with wrinkling. In contrast to conventional approaches, every aspect of the physical problem derives from minimization of suitable energy functionals. A variational formulation of finite strain plasticity theory, which leads to a minimization problem for the constitutive updates, serves as the starting point for the derivations. In order to take into account the kinematics induced by wrinkles and slacks, a relaxed version of the finite strain functional is postulated. In effect, the local incremental stress-strain relations are established via differentiation of the relaxed energy functional with respect to the strains. Hence, the presented formulation is fully analogous to that of hyperelasticity with the sole exception that the aforementioned functional depends on history variables and, accordingly, it is path dependent. The advantages associated with the developed variational method are manifold. From a practical point of view, the possibility of applying standard optimization algorithms to solve the minimization problem describing inelastic membranes is remunerative. From a mathematical point of view, on the other hand, the energy of the system induces some sort of natural metric representing an essential requirement for error estimation and thus, for adaptive finite element methods. The presented derivation of the model allows to consider possible material symmetries in the elastic as well as plastic response of the material. As a prototype, a von Mises-type model is implemented. The efficiency and performance of the resulting algorithm are demonstrated by means of numerical examples.
منابع مشابه
Wrinkling Analysis of A Kapton Square Membrane under Tensile Loading
A buckling solution and a non-linear post buckling solution were employed for the wrinkling analysis of a tensioned Kapton square membrane. The buckling solution with significantly reduced bending stiffness creates localized buckling modes accounting for the wrinkle formation in the membrane. The non-linear post buckling solution with an updated Lagrangian scheme describes the detailed wrinkle ...
متن کاملFinite element analysis of membrane wrinkling
New results are presented for the nite element analysis of wrinkling in curved elastic membranes undergoing large deformation. Concise continuum level governing equations are derived in which singularities are eliminated. A simple and e cient algorithm with robust convergence properties is established to nd the real strain and stress of the wrinkled membrane for Hookean materials. The continuum...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملAn Efficient Finite Element Formulation Based on Deformation Approach for Bending of Functionally Graded Beams
Finite element formulations based generally on classical beam theories such as Euler-Bernoulli or Timoshenko. Sometimes, these two formulations could be problematic expressed in terms of restrictions of Euler-Bernoulli beam theory, in case of thicker beams due to non-consideration of transverse shear; phenomenon that is known as shear locking characterized the Timoshenko beam theory, in case of...
متن کاملFinite-element Formulations for Problems of Large Elastic-plastic Deformation
Abstract-An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill’s variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventions finite element program, for “small strain” elastic-plastic an...
متن کامل